206 research outputs found

    Regulation of the Immune Balance During Allogeneic Hematopoietic Stem Cell Transplantation by Vitamin D

    Get PDF
    One of the most promising therapeutic approaches for numerous hematological malignancies represents the allogeneic hematopoietic stem cell transplantation (allo-HSCT). One major complication is the development of the life-threatening graft-vs.-host disease (GvHD) which limits beneficial effects of graft-vs.-leukemia (GvL) responses during allo-HSCT. Strengthening GvL effects without induction of severe GvHD is essential to decrease the relapse rate after allo-HSCT. An interesting player in this context is vitamin D3 since it has modulatory capacity in both preventing GvHD and boosting GvL responses. Current studies claim that vitamin D3 induces an immunosuppressive environment by dendritic cell (DC)-dependent generation of regulatory T cells (Tregs). Since vitamin D3 is known to support the antimicrobial defense by re-establishing the physical barrier as well as releasing defensins and antimicrobial peptides, it might also improve graft-vs.-infection (GvI) effects in patients. Beyond that, alloreactive T cells might be attenuated by vitamin D3-mediated inhibition of proliferation and activation. Despite the inhibitory effects of vitamin D3 on T cells, anti-tumor responses of GvL might be reinforced by vitamin D3-triggered phagocytic activity and antibody-based immunotherapy. Therefore, vitamin D3 treatment does not only lead to a shift from a pro-inflammatory toward a tolerogenic state but also promotes tumoricidal activity of immune cells. In this review we focus on vitamin D3 and its immunomodulatory effects by enhancing anti-tumor activity while alleviating harmful allogeneic responses in order to restore the immune balance

    Characterization of the monocyte-specific esterase (MSE) gene

    Get PDF
    Carboxylic esterases are widely distributed in hematopoietic cells. Monocytes express the esterase isoenzyme (termed 'monocyte-specific esterase', MSE) that can be inhibited by NaF in the alpha-naphthyl acetate cytochemical staining. We examined the expression of MSE in normal cells and primary and cultured leukemia-lymphoma cells. The MSE protein was demonstrated by isoelectric focusing (IEF); MSE mRNA expression was investigated by Northern blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). The following samples were positive for MSE protein and Northern mRNA expression: 20/24 monocytic, 4/32 myeloid, and 1/20 erythroid-megakaryocytic leukemia cell lines, but none of the 112 lymphoid leukemia or lymphoma cell lines; of the normal purified cell populations only the monocytes were positive whereas, T, B cells, and granulocytes were negative; of primary acute (myelo) monocytic leukemia cells (CD14-positive, FAB M4/M5 morphology) 14/20 were Northern mRNA and 11/14 IEF protein positive. RT-PCR revealed MSE expression in 29/49 Northern-negative lymphoid leukemia-lymphoma cell lines. The RT-PCR signals in monocytic cell lines were on average 50-fold stronger than the mostly weak trace expression in lymphoid specimens. On treatment with various biomodulators, only all-trans retinoic acid significantly upregulated MSE message and protein levels but could not induce new MSE expression in several leukemia cell lines; lipopolysaccharide and interferon-gamma increased MSE expression in normal monocytes. Analysis of DNA methylation with sensitive restriction enzymes showed no apparent regulation of gene expression by differential methylation; the MSE gene is evolutionarily conserved among mammalian species; the half-life of the human MSE transcripts was about 5-6 h. The extent of MSE expression varied greatly among different monocytic leukemia samples. However, the MSE overexpression in a significant number of specimens was not associated with gene amplification, gross structural rearrangements or point mutations within the cDNA region. Taken together, the results suggest that MSE expression is not absolutely specific for, but strongly associated with cells of the monocytic lineage; MSE is either not expressed at all or expressed at much lower levels in cells from other lineages. The biological significance, if any, of rare MSE messages in lymphoid cells detectable only by the hypersensitive RT-PCR remains unclear. Further studies on the regulation of this gene and on the physiological function of the enzyme will no doubt be informative with respect to its striking overexpression in some malignant cells and to a possible role in the pathobiology of monocytic leukemias

    NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Get PDF
    Modulation of G protein-coupled receptor (GPCR) signaling by local changes in intracellular calcium concentration is an established function of Calmodulin (CaM) which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with CaM targets with different functional outcome. In the present study we aimed to investigate if a target of CaM—the A2A adenosine receptor is able to associate with two other neuronal calcium binding proteins (nCaBPs), namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments we show the existence of A2A—NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signaling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signaling

    Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model

    Get PDF
    IntroductionThe discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. MethodsExperiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade.ResultsThe key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh.DiscussionFurther research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels

    Degradation of D-2-hydroxyglutarate in the presence of isocitrate dehydrogenase mutations

    Get PDF
    D-2-Hydroxyglutarate (D-2-HG) is regarded as an oncometabolite. It is found at elevated levels in certain malignancies such as acute myeloid leukaemia and glioma. It is produced by a mutated isocitrate dehydrogenase IDH1/2, a low-affinity/high-capacity enzyme. Its degradation, in contrast, is catalysed by the high-affinity/low-capacity enzyme D-2-hydroxyglutarate dehydrogenase (D2HDH). So far, it has not been proven experimentally that the accumulation of D-2-HG in IDH mutant cells is the result of its insufficient degradation by D2HDH. Therefore, we developed an LC-MS/MS-based enzyme activity assay that measures the temporal drop in substrate and compared this to the expression of D2HDH protein as measured by Western blot. Our data clearly indicate, that the maximum D-2-HG degradation rate by D2HDH is reached in vivo, as v(max) is low in comparison to production of D-2-HG by mutant IDH1/2. The latter seems to be limited only by substrate availability. Further, incubation of IDH wild type cells for up to 48 hours with 5 mM D-2-HG did not result in a significant increase in either D2HDH protein abundance or enzyme activity

    Immunometabolic Markers in a Small Patient Cohort Undergoing Immunotherapy

    Get PDF
    Although the discovery of immune checkpoints was hailed as a major breakthrough in can cer therapy, generating a sufficient response to immunotherapy is still limited. Thus, the objective of this exploratory, hypothesis-generating study was to identify potentially novel peripheral biomarkers and discuss the possible predictive relevance of combining scarcely investigated metabolic and hor monal markers with immune subsets. Sixteen markers that differed significantly between responders and non-responders were identified. In a further step, the correlation with progression-free survival (PFS) and false discovery correction (Benjamini and Hochberg) revealed potential predictive roles for the immune subset absolute lymphocyte count (rs = 0.51; p = 0.0224 *), absolute basophil count (rs = 0.43; p = 0.04 *), PD-1+ monocytes (rs = −0.49; p = 0.04 *), hemoglobin (rs = 0.44; p = 0.04 *), metabolic markers LDL (rs = 0.53; p = 0.0224 *), free androgen index (rs = 0.57; p = 0.0224 *) and CRP (rs = −0.46; p = 0.0352 *). The absolute lymphocyte count, LDL and free androgen index were the most significant individual markers, and combining the immune subsets with the metabolic markers into a biomarker ratio enhanced correlation with PFS (rs = −0.74; p ≤ 0.0001 ****). In summary, in addition to well-established markers, we identified PD-1+ monocytes and the free androgen index as potentially novel peripheral markers in the context of immunotherapy. Furthermore, the combination of immune subsets with metabolic and hormonal markers may have the potential to enhance the power of future predictive scores and should, therefore, be investigated further in larger trials

    Combined Metabolic Targeting With Metformin and the NSAIDs Diflunisal and Diclofenac Induces Apoptosis in Acute Myeloid Leukemia Cells

    Get PDF
    The accelerated metabolism of tumor cells, inevitable for maintaining high proliferation rates, is an emerging target for tumor therapy. Increased glucose and lipid metabolism as well as mitochondrial activity have been shown in solid tumors but also in leukemic cells. As tumor cells are able to escape the blockade of one metabolic pathway by a compensatory increase in other pathways, treatment strategies simultaneously targeting metabolism at different sites are currently developed. However, the number of clinically applicable anti-metabolic drugs is still limited. Here, we analyzed the impact of the anti-diabetic drug metformin alone or in combination with two non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac and diflunisal on acute myeloid leukemia (AML) cell lines and primary patient blasts. Diclofenac but not diflunisal reduced lactate secretion in different AML cell lines (THP-1, U937, and KG-1) and both drugs increased respiration at low concentrations. Despite these metabolic effects, both NSAIDs showed a limited effect on tumor cell proliferation and viability up to a concentration of 0.2 mM. In higher concentrations of 0.4–0.8 mM diflunisal alone exerted a clear effect on proliferation of AML cell lines and blocked respiration. Single treatment with the anti-diabetic drug metformin blocked mitochondrial respiration, but proliferation and viability were not affected. However, combining all three drugs exerted a strong cytostatic and cytotoxic effect on THP-1 cells. Comparable to the results obtained with THP-1 cells, the combination of all three drugs significantly reduced proliferation of primary leukemic blasts and induced apoptosis. Furthermore, NSAIDs supported the effect of low dose chemotherapy with cytarabine and reduced proliferation of primary AML blasts. Taken together we show that low concentrations of metformin and the two NSAIDs diclofenac and diflunisal exert a synergistic inhibitory effect on AML proliferation and induce apoptosis most likely by blocking tumor cell metabolism. Our results underline the feasibility of applying anti-metabolic drugs for AML therapy

    Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells

    Get PDF
    Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon (R)) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo

    D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization

    Get PDF
    D-2-hydroxyglutarate (D-2HG) is released by various types of malignant cells including acute myeloid leukemia (AML) blasts carrying isocitrate dehydrogenase (IDH) gain-of-function mutations. D-2HG acting as an oncometabolite promotes proliferation, anoikis, and differentiation block of hematopoietic cells in an autocrine fashion. However, prognostic impact of IDH mutations and high D-2HG levels remains controversial and might depend on the overall mutational context. An increasing number of studies focus on the permissive environment created by AML blasts to promote immune evasion. Impact of D-2HG on immune cells remains incompletely understood. Here, we sought out to investigate the effects of D-2HG on T-cells as key mediators of anti-AML immunity. D-2HG was efficiently taken up by T-cells in vitro, which is in line with high 2-HG levels measured in T-cells isolated from AML patients carrying IDH mutations. T-cell activation was slightly impacted by D-2HG. However, D-2HG triggered HIF-1a protein destabilization resulting in metabolic skewing towards oxidative phosphorylation, increased regulatory T-cell (Treg) frequency, and reduced T helper 17 (Th17) polarization. Our data suggest for the first time that D-2HG might contribute to fine tuning of immune responses
    corecore